Solar Program Annual Review Meeting

Session: CIGS

Company: GE Global Research

Funding Opportunity: TPP

Title: A Value Chain Partnership for PV Industry Growth

Danielle Merfeld GE Global Research Center merfeldw@research.ge.com (518) 387-4252

Overall Program Scope

Integrated GE-Branded PV System

Pathway 1: Bifacial High-Efficiency Silicon

Pathway 2: Low-Cost Multicrystalline Silicon

Pathway 3: Flexible Thin Film

Residential Applications

GE Commercial and Industrial Channels

Commercial Applications

\$46.7MM Effort over 3 years

Budget and Roadmap Alignment

<u>Flexible TF Goal:</u> Develop low-cost, reliable flexible encapsulation strategy including moisture barrier coating technology on weatherable polymers.

Thin Film Packaging Budget Overview

Budget	Budget	Budget	Total Budget
Period 1	Period 2	Period 3	
\$1.5 M	\$0.8 M	\$0.6M	\$3 M

Alignment to Roadmap Metrics

Qualification	Life	Degradation	Installed Cost	LCOE (2015)
IEC 6-1646	> 20 yrs	< 1%/yr	< \$2.60/W	\$0.06-\$0.08

Project Overview

- Validate performance of CIGS cells on flexible substrates - Vendor relationships
- Develop UV-stable polymer film, barrier coating, and encapsulant
- 3. Develop interconnect and power-off method
- Produce prototype module capable of passing certification tests

http://www.globalsolar.com

GE Barrier Coating Technology

GE UV-Stabilization of Polymers

Vendor R2R CIGS Technology

Ultimate Goal: Cost-Effective R2R Thin Film Photovoltaics

Critical Success Factors and Risks

2

Critical Success Factor

UIS		R	is	k
------------	--	---	----	---

Cell efficiency Cell efficiencies too low to allow detectible variations in

test results (signal/noise ratio)

Cell consistency Inconsistent cell efficiency and other performance

characteristics conflicts with weathering and barrier

coating results

Moisture permeation rate

Moisture penetration detrimental to cell performance

Reliable packaging

Flexible packaging

Packaging cost

Cell interconnect technology

Photo-induced degradation of polymer films

Delamination due to poor adhesion of encapsulants

Weatherable polymers or moisture barriers not resistant to mechanical flexibility

High cost of base films and/or functional coatings

Unable to interconnect cells without thermal damage

Methodology of TF PV Packaging

- Protect the device mechanical, insulation, moisture
- Flexible packaging must protect the package UV, moisture
- Device + package must be cost-effective challenging
- Need to predict lifetime
 - accelerated testing protocols needed
- Need to pass certification tests
 - may or may not relate to lifetime

Accelerated Testing

Accelerated Testing Example - Polymer Weathering

Determine Failure Mechanisms – photo-oxidation, hydrolysis

Stresses – UV dose, temperature, moisture, thermal cycle

Fit to degradation model

Degradation rate = function(stress values)

Input any stress profile (weatherometer, Miami, Phoenix) --> calculate rate of degradation

Determine acceleration factors

- Weatherometer: 1 "day" compressed into 3 hours test
 - Accelerate photo-oxidation about 7-8× Phoenix
 - Accelerate hydrolysis about 7-8× Miami
- Move samples closer to lamp ("offset") light, temp → 2X
 - 14 × means <u>2 years weatherometer</u> ~ 28 years outdoor

Test at accelerated conditions

Predict life

Project Update: Results- Polymer Film

 3 stabilization schemes identified for PC and PET (lower cost, recyclable alternatives)

Co-extruded highly stabilized polymer layers

need low erosion rate

Coatings

Lifetime is determined by stability of UV absorbers (k), initial transmission T_o , and sensitivity of substrate (D_{fail}) .

$$t_{fail} = \frac{1}{k} \log_{10} \left[\frac{10^{kD_{fail}} + T_0 - 1}{T_0} \right]$$

Project Update: Results- Moisture Barrier

Simultaneous testing at multiple humidities and tempe.

- Constant relative humidity at approx. 83, 75, 50, 25, and 0%
- Temperatures of 85, 75, 65, and 55°C
- Cells coated with thin PMMA layer to prevent liquid water or salts from actually contacting the surface
- 280 hours of exposure so far

Damp Heat Test:

Cells mounted such that only moisture ingress through the front is a factor

Results Overview

- Cells specified, received from vendors
- Cells validated quoted performance of adequate efficiency
- Three UV-stabilization approaches identified
- Accelerated weathering conditions have been determined
- Samples have accumulated 5-8 years accelerated testing at 7X and 14X acceleration factors
- Ramping up additional barrier and lamination experiments.

